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Abstract
M2AX phases are a family of nanolaminate, ternary alloys that are composed of slabs of
transition metal carbide or nitride (M2X) separated by single atomic layers of a main group
element. In this combination, they manifest many of the beneficial properties of both ceramic
and metallic compounds, making them attractive for many technological applications. We
report here the results of a large scale computational survey of the elastic properties of all 240
elemental combinations using first-principles density functional theory calculations. We found
correlations revealing the governing role of the A element and its interaction with the M
element on the c axis compressibility and shearability of the material. The role of the X element
is relatively minor, with the strongest effect seen in the in-plane constants C11 and C12. We
identify several elemental compositions with extremal properties such as W2SnC, which has by
far the lowest value of C44, suggesting potential applications as a high-temperature dry
lubricant.

S Supplementary data are available from stacks.iop.org/JPhysCM/21/305403

1. Introduction

M2AX phases [1, 2] are a class of materials composed of
three elements (figure 1): an early transition metal (M), a
main group element (A), and either carbon or nitrogen (X).
M2AX phases are characterized by a nanolaminate structure
in which slabs of the carbide/nitride (M2X) are separated by
single atomic layers of the A element. This layered structure
results in a unique combination of ceramic and metallic
properties [3]. M2AX phases mimic ceramics in that they are
stiff [4], resistant to oxidation [5], and are believed to remain
strong at temperatures exceeding 1400 ◦C [6]. The metal-
like properties of M2AX phases manifest themselves in their
machinability [7], resistance to thermal shock [8], high damage
tolerance [9], and electrical [10] and thermal conductivity [11].
This combination of metallic and ceramic properties is
attractive for a number of technological applications, including
use as a high-temperature structural material where M2AX
phases could greatly exceed the capabilities of current metal
alloy materials.

Elastic properties are of particular interest as they deter-
mine important macroscopic properties such as lubrication,
friction, and machinability. Experimental investigation of
M2AX phase elastic properties has been hindered by the
difficulties associated with producing phase pure samples [12].

Figure 1. Periodic table of the elements in which those elements that
participate in M2AX phase formation are highlighted in shades of
grey (colour). The M elements are shaded light grey (blue), the A
elements medium grey (green) and the X elements dark grey (red).

(This figure is in colour only in the electronic version)

This makes theoretical investigations important tools in under-
standing these materials as they can be used to analyse phases
that have not been experimentally prepared. The large number
of elemental combinations of the M2AX phases suggests a
wide tunability of materials properties which could be mapped
out using theory. Several theoretical studies [13–19] have
already considered the elastic properties of selected M2AX
phases. However, these studies have been limited to small
subsets of the M2AX phase family. Furthermore, calculated
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Table 1. The generic crystal structure of a M2AX phase (space
group P63/mmc, #194). The independent variables particular to
each elemental composition are the hexagonal lattice constants a and
c, as well as zM, the vertical position of the M element.

Element Wyckoff x/a y/b z/c

M (4f) 1/3 2/3 zM

A (2d) 1/3 2/3 3/4
X (2a) 0 0 0

constants often vary considerably between different groups
due to differences in methodology, thus preventing effective
comparisons. A single, comprehensive study covering all
elemental combinations is required to provide global insights
into the underlying structure/property relationships.

High throughput combinatorial surveys of material
properties have a number of precedents in applications such
as binary alloys [20–23], alloy surface catalysts [24–26],
cathode materials for use in batteries [27], and fuel cell anode
catalysts [28]. Common to these studies is a computational
survey over a large number of elemental and structural
combinations to identify property trends of interest. This
generally requires a robust and well-defined computational
method that can be applied universally to all combinations
so that calculated properties can be compared. The method
must also be efficient enough so that all combinations can be
calculated. This may result in a choice of method that may not
be ideal in terms of accuracy, yet good enough to screen a large
number of combinations for interesting compositions. To this
end, density functional theory offers a good balance between
computational efficiency and predictive accuracy. Inspired
by these principles, we formulate a procedure to calculate
elastic constants and derived properties of all 240 elemental
combinations of the M2AX phase family. The resulting data
base of elastic properties (provided in full as supplementary
data available at stacks.iop.org/JPhysCM/21/305403) is data
mined for structure/property correlations and trends. We
identify several M2AX phases that feature extremal elastic
properties.

2. Methods

2.1. M2AX phase structure

The generic crystallographic positions of a M2AX phase are
summarized in table 1. The structure is broadly characterized
by a highly symmetric hexagonal unit cell containing atomic
layers of M, A, and X elements stacked along the c direction.
Each X layer of atoms is sandwiched between two M layers
to form a slab of M2X composition with a local fcc-type
stacking sequence. Single atomic layers of the A elements
separate these slabs. The local stacking around the A atomic
layer follows a hcp style pattern so that the A layer forms a
mirror plane in the crystal. Due to high symmetry, the crystal
structure is fully defined by the a and c lattice vectors and the
interplanar separation dMX between M and X atomic layers.
The interplanar separation dMX is derived from the internal
parameter zM by dMX = czM. The interplanar separation
between M and A atomic layers dMA is given by dMA =
c(1/4 − zM).

2.2. Density functional theory

All calculations in this work are carried out using density
functional theory (DFT) and the planewave/core potential
formalism implemented in the VASP software [29–31]. Core
electrons are represented using projector-augmented wave
(PAW) core potentials [32, 33]. The eigenfunctions of
valence and near-valence electrons are expanded in terms of a
planewave basis. Electron exchange and correlation are treated
in the generalized gradient approximation using the PW91
functional [34].

To avoid the need to optimize computational parameters
such as k-point density and planewave cutoff for all 240 M2AX
phases considered in this work, we choose three representative
trial phases: Ti2SiC, W2AlC, and Cr2SnN. We believe that
these adequately cover the elemental diversity of the M, A, and
X elements. Our parameter choices are validated against these
three trial structures.

Integrations over the Brillouin zone of the M2AX phase
hexagonal unit cells are performed using discrete �-centred
grids of 15 × 15 k-points in the reciprocal a, b-plane and 5
points along c. For our three trial phases, the calculated energy
is converged to within 3 meV (per M2AX formula unit) of the
limiting value at large cutoff.

We use a universal planewave energy cutoff of 500 eV in
our calculations. This is above the recommended cutoff for all
the elemental core potentials used in our survey. For the three
trial phases, the total energies calculated with this cutoff are
converged to within 5 meV (per formula unit) of the highest
cutoff tested (900 eV). Further tests confirmed that an increase
of the cutoff from 500 to 700 eV would result in changes in
the calculated elastic constants Ci j of less than 1 GPa. Our
choice of a 500 eV cutoff is also in line with previous PAW–
DFT studies on M2AX phases [13, 14, 35–37]. The planewave
cutoff for the augmentation charge density is set to 1500 eV.

In our geometry optimizations, we use a force component
convergence criterion of 0.01 eV Å

−1
which we confirmed

through testing to be adequate for the purpose of this work.

2.3. Calculation of elastic constants

The elastic constants Ci j relate the stress σi of a material to
the applied strain α j . These constants can be conveniently
calculated in one of two ways. In the energy method the unit
cell is subjected to a number of finite size strains along several
strain directions. The calculated energies Estrain are fitted to the
quadratic equation

Estrain = E(0) + V0

∑

i, j

1
2 Ci jαiξiα jξ j (1)

which is a simple Taylor expansion of Estrain in α to the second
order. In this equation, we use the Voigt notation for the stress
and strain directions, E(0) is the energy of the relaxed cell, and
V0 is the relaxed volume of the cell. The factor ξ j equals one
for j = 1, 2, or 3. For j = 4, 5, and 6, ξ j equals two [38].
In equation (1), there is no term that is linear in α, because the
expansion is centred about the relaxed cell.
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Table 2. The energy and stress equations as a function of the strain magnitude α for the five strain directions given by Fast et al [38].

Strain Energy method Stress method

1 E(α) = E(0) + V0(C11 + C12)α
2 σ1(α) + σ2(α) = 2(C11 + C12)α

2 E(α) = E(0) + V0(C11 − C12)α
2 σ1(α) − σ2(α) = 2(C11 − C12)α

3 E(α) = E(0) + 1
2 V0C33α

2 σ3(α) = C33α

4 E(α) = E(0) + 2V0C44α
2 σ5(α) = 2C44α

5 E(α) = E(0) + 1
2 V0(2C11 + 2C12 + 4C13 + C33)α

2 σ1(α) + σ2(α) + σ3(α) = (2C11 + 2C12 + 4C13 + C33)α

In the alternative strain method the stress–strain relation is
used directly. Calculated stresses of the strained cells are fitted
to the following linear equation:

σi =
∑

j

Ci jα jξ j . (2)

In both methods the strain is assumed small enough so that
relaxations along the other strain directions can be neglected.

M2AX phases, as hexagonal materials, are characterized
by five unique elastic constants, namely C11, C12, C13, C33,
and C44. These constants are economically calculated using
the five strains proposed by Fast et al [38] which result in a
minimal loss of symmetry. Using this particular set of five
strains, equations (1) and (2) are simplified to the forms given
in table 2.

The VASP software calculates both the DFT energy and
the stresses for a strained unit cell, thus we can use either the
energy or the stress method to calculate elastic constants. After
evaluating both methods, we decided to use the stress method
in this work. The advantage of the stress method is that fewer
strains are required for each direction to accurately fit the linear
equations (see table 2). For each direction, we use two finite
strains of magnitudes ±α about the unstrained cell, leading to
a three point fit to the linear stress equations. In contrast, the
energy method used by Fast et al [38] uses four finite strains
for a five point fit to the quadratic energy equations.

Both methods rely strongly on the assumption that the
strain magnitudes α are small enough to ensure a linear stress–
strain relation. However as α gets smaller, numerical errors
become larger. Having tested values between ±0.001 and
±0.02, we chose a value of α = ±0.01 for the stress method
because it gave the best agreement with the five point energy
method for the three trial phases. Fast et al [38] recommend
0.01 and 0.02 for the energy method, so our choice of 0.01 for
the stress method is consistent with their work.

After a strain is applied to our computational unit cell,
we reoptimize the internal atomic positions because the cell
distortion dislocates the atoms from their minimum energy
positions. These internal reoptimizations are important as they
significantly affect the calculated elastic constants. In addition,
we found that internal reoptimization caused the energy and
stress methods to produce more consistent results. We presume
this occurs because the truncated expansions that underpin
the stress and energy methods are affected differently by any
residual internal stresses.

From the fitted elastic constants Ci j we compute several
derived elastic properties including the elastic moduli (B , G,
and E) and two types of performance parameter (μM and μD).

The bulk modulus (B) is a measure of the volume
compressibility of a material and is given by:

B = 2
9 (C11 + C12 + 2C13 + C33/2).

The shear modulus (G) quantifies the average shearability
of a material. Following previous work [14], we use the Voigt
approximation [39] to calculate the shear modulus as

G = 1
15 (2C11 + C33 − C12 − 2C13)

+ 1
5 (2C44 + 1

2 (C11 − C12)).

We note that for the M2AX phases, the most interesting
shear plane is the [0001]-plane between the M2X slabs and the
A atomic layer. The relevant constant for this shear is C44.

The Young’s modulus (E) measures the response to a
uniaxial stress averaged over all directions. It is obtained from
the bulk and shear moduli using the expression for an isotropic
material.

E = 9BG

3B + G
. (3)

Two types of derived performance indicators are the
ductility index, μD, due to Pugh [40], given by

μD = B/G (4)

and the machinability index, μM, due to Sun et al [41] which
is defined as

μM = B/C44. (5)

The underlying assumption of these two indices is that
high tensile strength combined with low shear resistance leads
to good machinability. The two indices give measures of this
ratio, with one using C44 as the measure of shear resistance
whilst the other uses G.

2.4. Computation procedure

Our large scale computational survey raises a number of
technical issues that are worth noting. These are (1) loss
of hexagonal symmetry during optimization, (2) multiple
stationary points on a complex potential energy landscape, and
(3) elastically unstable structures.

We optimized the geometry of a M2AX phase crystal
structure using a recursive, self-consistent protocol, in which
the final structure of one optimization becomes the initial
structure of the next. This is repeated until initial and final
structures are the same. This ensures that the number of
planewaves used to evaluate the final energy is consistent
with the volume of the final structure and is not affected by
the volume of the starting structure. The recursive process
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Table 3. An example of a M2AX phase with multiple stationary
points on the potential energy surface. For each stationary point
found, we report the energy per formula unit (in eV) and the lattice
constants (in Å). Elastic constants (in GPa) are given for stable
structures. For the unstable structure we report the Fast et al strain
numbers (see table 2) that lead to structures of lower energy.

M2AX Energy a c C11 C12 C13 C33 C44

Mo2SN −34.757 3.340 10.96 301 196 145 267 19
−34.501 3.019 12.55 308 180 218 381 130
−34.370 3.169 11.73 unstable in 1, 2, 5

occasionally results in the loss of hexagonal symmetry, which
results in a much slower calculation as well as problems later
on when strains are applied to the cell. To prevent this, we
introduced a resymmetrization step between each cycle of the
recursive reoptimization. This involved resetting the angles
between the lattice vectors, equalizing the in-plane lattice
vectors, and resetting the in-plane internal parameters to the
high symmetry points.

In the course of our M2AX phase survey we found that
several of the compositions have more than one stationary point
on the potential energy surface. These stationary points differ
quite significantly in the lattice parameters a and c, as well as
the calculated formation energy. For these phases the choice of
starting structure determines the optimized structure. Details
for one example, Mo2SN, are given in table 3. For this phase
we have identified three stationary points, two of which are
stable in that they are minima on the potential energy surface.
This is shown by the fact that the energy–strain equations (see
table 2) have positive curvature in all five strain directions.
The third stationary point found during optimization is not a
minimum. Distortion of this structure along Fast et al strain
directions 1, 2, and 5 resulted in structures of lower energy. We
will assume here that the structure with the lowest energy is the
global energy minimum. Relative to the global minimum, the
other stable structure and the unstable structure are 0.26 eV and
0.39 eV higher in energy, respectively.

The finding of multiple minima for some phases raises
questions. To what extent are our results for the other
phases of our survey influenced by our choice of starting
structure? How common is the multiple stationary point
phenomenon in the M2AX phase family? How sure can we
be that we have found the global minimum for the phases
that we consider? To these questions we cannot give a
definitive answer, because the DFT optimization methods are
generally local optimization methods. While there cannot be a
guarantee that the global minimum has been found, multiple
optimizations with differing initial structures dramatically
increase the chances of finding it.

Phases with multiple stationary points appear to be
limited to certain elements (mainly Mo and W) or element
pairings (S–N). We established this by performing systematic
optimizations with three different starting structures for phases
that (1) were found to be elastically unstable, (2) exhibited a
shallow minimum during the elastic constant calculation, or
(3) are characterized by extremal properties. We believe this
result affords a reasonable degree of confidence that most, if

not all of the phases presented in our data are at their global
minimum.

For 17 elemental compositions, we were unable to locate
minimum energy structures with hexagonal M2AX phase
symmetry, despite multiple optimization attempts. These
phases are:

V2SN Cr2SN Mo2AlN Mo2SiN Mo2SC
Mo2GeN Mo2InN Mo2SnN W2AlN W2SiN
W2SC W2SN W2GaN W2GeN W2InN
W2SnN W2PbC.

In all these cases, a symmetry breaking strain (Fast et al
strain 2 and/or 4, see table 2) leads to a non-hexagonal
structure with lower energy. This suggests that the
symmetric M2AX phase structure is not the most energetically
favourable structure for these combinations of elements,
possibly explaining why these phases have not been observed
experimentally.

3. Results and discussion

3.1. Error analysis

Our survey has given the structural and elastic prop-
erties of 240 M2AX phases. The complete data set
is provided as supplementary material, available from
stacks.iop.org/JPhysCM/21/305403. We begin our analysis of
this data with an estimate of the accuracy of these results.
Sources of error include the intrinsic inaccuracy of the DFT
formalism and the particular approach chosen to calculate
elastic constants. We establish some measure of the magnitude
of these errors by comparing our results with (1) experimental
measurements, (2) theoretical elastic constants calculated by
other groups, and (3) results obtained by a different method.

In table 4 we compare our elastic constants with
experimental and theoretical constants reported in the
literature. Looking first at the theoretical results, we see a
considerable variation with many constants differing by up to
30 GPa between groups. The results from our work generally
lie within the spread of results from other works. However
the spread highlights the effect of the choice of computational
method on the results. It is worth noting that we are using
a more sophisticated approach than some (but not all) of the
other works cited in that we relax the internal atomic positions
in the strain calculations. Experimental results have only been
obtained for the elastic moduli B , G, and E . Comparison of
our results with experimental data shows a reasonable degree
of agreement. In particular, comparison of our calculated
moduli with the measurements reported by Hettinger et al [35]
show agreement to within 10 GPa for the Nb2AlC and Ti2AlC
phases; however for the V2AlC and Cr2AlC phases the moduli
vary by up to 87 GPa. Differences in the experimental moduli
reported by different groups indicate that there is considerable
error in the experimental method as well.

In order to get a more detailed understanding of the effect
of the method on specific elastic constants, we compare our
constants, calculated with a three point stress method, with
those obtained by a three point energy calculation. The
three point energy calculation is certainly more approximate,
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Table 4. Comparison of M2AX phase elastic properties (in GPa) of this work with previous experimental and theoretical results in the
literature. Results of this work are on the top line of each cell and are in bold.

Elastic constants (Theory) B G E
M2AX
phase C11 C12 C13 C33 C44 Expt Theory Expt Theory Expt Theory

V2AlC 339 71 100 319 148 171 134 319
338a 92a 148a 328a 155a 139b 215b 116c 128a 277c 308a

346d 71d 106d 314d 151d 152c 175d 139d 306d, 261d

198a

197e

Ti2GaC 303 66 63 263 101 139 109 260
314f 66f 59f 272f 122f 141f 121f 282f

V2GaC 334 81 111 299 138 175 125 302
343f 67f 124f 312f 157f 181f 133f 321f

Nb2GaC 309 80 138 262 126 177 108 270
374f 88f 135f 310f 149f 196f 132f 323f

Ta2GaC 335 106 137 315 137 194 118 294
420f 101f 146f 333f 175f 217f 151f 367f

Zr2AlC 261 63 63 224 87 125 92 221
278g 64g 67g 235g 97g 132g 100g 238g

Zr2AlN 264 77 89 235 105 141 94 231
285g 89g 92g 266g 129g 154g 107g 261g

Nb2AlC 310 90 118 289 139 173 116 285
341d 94d 117d 310d 150d 165c 183d 117c 131d 286c 288d, 247d

334a 115a 149a 324a 154a 128b 205a 119a 299a

Ta2AlC 334 114 130 322 148 193 122 303
354a 140a 159a 356a 172a 221a 126a 319a

Ti2AlC 302 62 58 270 109 137 114 267
321a 76a 100a 318a 144a 115b 171b 118c 128a 277c 305a

307g 58g 63g 284g 118g 144c 141g 119g 279g

308d 55d 60d 270d 111d 137d 118d 290d, 250d

166e

168a

Ti2AlN 309 67 90 282 125 155 118 281
342h 56h 96h 283h 123h 107b 175b 122h 293h

311g 71g 102g 298g 133g 163g 114g 276g

163h

Cr2AlC 365 84 102 369 140 186 138 332
396a 117a 156a 382a 173a 138c 203b 105c 147a 245c 358a

384d 79d 107d 382d 147d 139b 193d 148d 347d, 332d

226e

226a

Sc2AlC 175 59 33 191 44 88 57 140
186i 58i 40i 189i 48i 93i 60i 146i

Sc2GaN 214 60 57 214 70 110 75 183
177i 77i 44i 181i 45i 96i 53i 132i

Sc2InC 175 59 33 173 41 86 54 135
206i 51i 38i 191i 50i 95i 67i 160i

Sc2TlC 180 54 30 166 37 84 55 135
199i 52i 35i 172i 50i 90i 65i 154i

a See [14]; b see [36]; c see [35]; d see [15]; e see [37]; f see [18]; g see [17]; h see [13]; i see [19].

however it can be calculated without any additional overhead
since the two strain calculations required have already been
done. Table 5 lists for each of the elastic constants and
moduli the mean, standard deviation and maximum value of
the difference between the two methods. The table shows
that some of the constants are more affected than others. C44

appears to be the least affected, with a mean difference of
1.8 GPa and 99.1% of the phases differing by less than 10 GPa.

In contrast C13 appears to be the most affected, with a mean
difference of 12.8 GPa and less than a third of the phases
differing by less than 10 GPa. It is also instructive to look
at the largest differences between the methods. Errors of more
than 50 GPa occur in instances with C12 and C33. The errors
in the elastic constants propagate into the elastic moduli. The
Young’s modulus appears to be more affected by the choice of
method than the bulk and shear moduli.
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Table 5. The mean, standard deviation, and maximum of the
absolute difference � in calculated results between the stress and
approximate energy methods. The percentage of M2AX phases with
a difference below 10 and 20 GPa are also given. C13 shows the
largest difference while C44 is the closest of the constants. The
moduli B and G have the best agreement.

Mean
(GPa)

Std.
dev.
(GPa)

Max.
(GPa)

� < 10
GPa (%)

� < 20
GPa (%)

C11 4.4 5.6 46.0 90.8 97.7
C12 3.5 5.2 51.3 94.5 98.6
C13 12.8 5.4 33.6 30.4 90.8
C33 5.5 6.7 57.3 86.2 96.3
C44 1.8 2.4 28.4 99.1 99.5
B 5.3 2.2 15.7 97.7 100
G 2.9 2.4 18.0 98.6 100
E 5.6 5.8 43.3 86.6 97.2

3.2. Phases with extremal properties

One of the advantages of our comprehensive data set is that
M2AX phases with extremal properties can be identified. We
are looking here for phases that stand out in any one of the
parameters and are thus of potential interest for technological
applications. In table 6, we present for several parameters
(lattice parameters, elastic constants, elastic moduli, and
the machinability indices) those phases with the largest and
smallest values. Taking an overall look at the phases featured
in this table, we see that several elements appear repeatedly.
Phosphorus is the A element in all the phases with the
largest elastic constants. As the softest A elements, cadmium,
thallium and lead, dominate the phases with the smallest elastic
constants. Cadmium is also the A element in all but one
of the phases with the largest structural parameters. Of the
M elements, tungsten, vanadium, tantalum, and chromium
appear often in the table. Specific phases of interest are
W2CdN and W2PN which have the largest and smallest c/a
ratio of 5.5 and 3.2, respectively. These two phases could
potentially give rise to interesting transport properties. Nb2SC
for instance, with a c/a of 3.5 (our calculation) is known
to exhibit superconductivity [42]. Sc2CdC and V2PC have
the largest and smallest interplanar separation between the M
and A atomic layers (dMA), respectively. As we will discuss
below this parameter critically impacts the elastic properties
of the M2AX phases. Ta2PN is the phase with the largest
bulk modulus (255 GPa), while Sc2CdC has the smallest with
73 GPa. This illustrates the wide range of bulk moduli through
the M2AX phase family.

For M2AX phases to be used in a wide range of
technological applications they must show good machinability,
which is characterized here using two machinability indices:
The Pugh [40] ductility index μD and the Sun et al [41]
machinability index μM. The last two rows of table 6 identify
the phases with the largest and smallest machinability indices.
The phase with the largest ductility index of 8.1 is Ta2PbN.
The phase with the largest machinability index is W2SnC
(μM = 33.3). Other phases with high machinability are
Mo2PbC (μM = 15.8) and Cr2PbN (μM = 12.2). The
machinability index is given by the ratio of bulk modulus

Figure 2. Correlation of M2AX phase bulk moduli and C44 shear
elastic constant (ρ = 0.62). Lines of constant machinability index
μM = B/C44 are indicated. On this graph phases of highest
machinability are located close to the vertical axis.

Table 6. M2AX phases with extremal properties: the table lists the
phases with the largest and smallest structural parameters (in Å),
elastic constants, elastic moduli (in GPa), machinability index μM,
and ductility index μD.

Property Largest Smallest

Phase Quantity Phase Quantity

a Zr2AsC 3.484 Cr2AlN 2.835
c W2CdN 15.83 Cr2SC 10.47
dMX W2CdN 1.436 Cr2PbN 0.849
dMA Sc2CdC 2.678 V2PC 1.654
c/a W2CdN 5.520 W2PN 3.208

C11 Ta2PC 384 Nb2TlN 105
C12 W2PN 232 V2CdC 0
C13 W2PC 239 Cr2TlC 22
C33 Ta2PC 422 Sc2CdC 130
C44 V2PC 204 W2SnC 6

B Ta2PN 255 Sc2CdC 73
G V2PC 154 Ta2PbN 16
E V2PC 376 Ta2PbN 46

μM W2SnC 33.33 V2PC 1.11
μD Ta2PbN 8.13 Ti2AlC 1.22

to C44. The motivation of this index being that useful
materials have to be strong (i.e. high bulk modulus) as well
as malleable (i.e. high shearability as indicated by a low
C44). The correlation between bulk modulus and C44 for our
data set of M2AX phases is shown in figure 2 with lines of
constant machinability indicated. The slope of these lines
increases with machinability. The data points adopt a broadly
triangular distribution with all phases located above the unity
machinability line. The phases with highest machinability
(W2SnC, Mo2PbC and Cr2PbN) are found near the vertical
axis. This means that phases with high shearability (small
C44) tend to have a higher machinability than those with low
shearability. The best example of this is W2SnC which has the
smallest C44 (6 GPa) of all the M2AX phases.
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Table 7. List of property pairings with an absolute correlation
coefficient |ρ| larger than 0.7. Properties include lattice parameters,
elastic constants, elastic moduli, atomic numbers, as well as row and
column number of the M and A elements. G and E are analytically
connected and thus have a very large coefficient.

Correlation coefficient ρ

Parameter 1 Parameter 2 M2AX M2AC M2AN

G E +0.995 +0.995 +0.995
c dMA +0.92 +0.96 +0.89
C13 B +0.92 +0.95 +0.90
C44 E +0.91 +0.92 +0.91
C33 B +0.91 +0.91 +0.90
C44 G +0.89 +0.90 +0.90
C11 E +0.84 +0.87 +0.80
C11 G +0.81 +0.84 +0.77
ColumnA dMA −0.80 −0.79 −0.81
C33 dMA −0.79 −0.81 −0.76
C33 C13 +0.78 +0.79 +0.79
RowA dMA +0.76 +0.76 +0.77
ColumnA c −0.76 −0.76 −0.75
C33 C11 +0.73 +0.78 +0.70
dMA B −0.73 −0.74 −0.71
C33 RowA −0.71 −0.67 −0.75
C12 B +0.71 +0.76 +0.71
C11 B +0.71 +0.72 +0.74
dMA zA +0.71 +0.70 +0.71
C33 C44 +0.70 +0.75 +0.66

3.3. Structure and elastic property correlations

Following on from the bulk modulus versus C44 correlation,
we now survey our data set for other correlations between
structural and elastic properties. Table 7 lists the correlation
coefficients, ρ, between the lattice parameters, elastic
constants Ci j , elastic moduli as well as the row, column, and
atomic numbers of the M and A elements. The table lists
all property pairs with a correlation coefficient of magnitude
greater than or equal to 0.7. Several informative correlations
become apparent in this data.

A large proportion of the correlations are found between
the elastic moduli (B , G, and E) and the constants (Ci j ).
This is not surprising as the moduli are calculated from
the constants. Also not surprising is the strong correlation
between G and E elastic moduli (ρ = 0.995) considering that
equation (3) simplifies to E ∼ 3G for B � G. This holds
for most of the M2AX phases which highlights the strong link
between the shear and tensile behaviour in these materials.

More interesting is the strong correlation (ρ = 0.92)
between the c lattice parameter and the interplanar separation
dMA in light of the fact that c and dMX are poorly correlated
(ρ = 0.48). This suggests that the unit cell dimensions in
the c direction are determined much more by the A atomic
layer than by the M2X slab. We further find that dMA is anti-
correlated with the column number of the A element (columnA;
ρ = −0.80) and correlated with the row number of the A
element (rowA; ρ = 0.76). This is likely to be a reflection
of the size of the A atom and the type of bonding between the
M and A layers.

Looking now at correlations between structural param-
eters and elastic constants, the only correlation above the
|ρ| = 0.7 threshold is between C33 and dMA (ρ = −0.79).

Figure 3. The correlation between the out-of-plane compressibility
C33 and the MA interplanar separation dMA (ρ = −0.79).

The data is shown in detail in figure 3. C33 describes
the compressibility of the lattice in the c, or out-of-plane,
direction in response to a strain in that direction. Therefore,
the correlation suggests that longer MA bonds tend to make
a M2AX phase more compressible in the c direction. The
importance of the A element to the elastic behaviour is also
evident in the correlation (ρ = −0.71) between the row
number of the A element (rowA) and C33.

The importance of C33 to the overall elastic behaviour
is evident in the fact that all but one of the other constants
(namely, C12) are correlated with C33 to |ρ| > 0.7. The elastic
constants C13, C11 and C44 have correlation coefficients with
C33 of 0.78, 0.73, and 0.70, respectively. The correlations of
C33 with C13 and C11 indicate that compressibility in the c
direction (facilitated by the A element) translates into better
compressibility in the in-plane direction. We hypothesize that
a greater flexibility in the A atomic layer allows the M2X slabs
to deform into the c direction thus reducing in-plane stress. The
correlation between C33 and C44 demonstrates the link between
out-of-plane compressibility and shearability of the structure.
The flexible nature of the MA bonds allows them to distort
into both in- and out-of-plane directions, thereby affecting both
compressibility and shearability of the M2AX phases. Overall
the elastic behaviour supports the idea that the A atomic layer
acts as a flexible buffer between the more rigid M2X slabs.

We now consider correlations between the carbide and
nitride phases to elucidate the effect of the X element on the
structural and elastic properties of M2AX phases. Table 8
reports the correlation coefficients between M2AC and M2AN
phases for structural parameters and elastic constants. Strong
correlations indicate a minor effect created by the choice of X
element whereas weak correlations indicate a greater role.

The universally high correlations between the structural
parameters are straightforward to understand. The dMA

parameter (ρ = 0.99) is least sensitive to the choice of
X element whilst dMX (ρ = 0.84) is the most affected.
For the elastic properties, the strongest correlation (ρ =
0.93) was found between the bulk moduli. Figure 4 shows

7
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Table 8. Calculated correlation coefficients ρ between M2AC and M2AN phases, evaluated for lattice parameters and elastic constants.

a c dMX dMA C11 C12 C13 C33 C44 B G E

0.89 0.94 0.84 0.99 0.59 0.63 0.84 0.91 0.85 0.93 0.71 0.73

Figure 4. Correlation of calculated bulk moduli B between the
M2AN and M2AC phases (ρ = 0.93).

the bulk modulus is almost unchanged between the M2AC
and M2AN phases implying that the choice of X does not
influence the compressibility of the material. This is consistent
with our earlier observation that the MA bonds determine
the compressibility in the c and in-plane directions. The
correlation between C33 is almost as strong (ρ = 0.91;
see figure 5) which further highlights the importance of the
A layer (as opposed to the M2X slab) to the out-of-plane
compressibility. Similarly, the importance of the A layer to
the shearing behaviour is evident in the high correlation found
for C44 (ρ = 0.85) indicating a lesser role of the X element.
The largest effect of the X element is found for the in-plane
constants C11 and C12 which have the smallest correlation
coefficients in the set (ρ = 0.59 and 0.63, respectively). For
the C12 constant the data is shown in figure 6. This is further
indicative [43] of the greater impact of the M2X slab, and
hence the X element, on the in-plane elastic properties. This
contribution appears to result from the electronic structure of
the MX bonds as opposed to the MX bond length, as both
dMX and a are highly correlated between the M2AC and M2AN
phases.

4. Summary and conclusions

The results and conclusions of this work can be summarized as
follows:

(i) We have implemented and tested a method to calculate
the elastic constants for 240 elemental compositions of the
large M2AX phase family of nanolaminate ceramics. Our
discussion covered several of the specific technical issues
that underpin such a large scale computational survey.
These are: the choice of an accurate yet robust approach

Figure 5. Correlation of the out-of-plane compressibility C33

between the M2AN and M2AC phases (ρ = 0.91).

Figure 6. Correlation of C12 between the M2AN and M2AC phases
(ρ = 0.63). The relatively weak correlation highlights the
importance of the X element to the in-plane elastic behaviour of the
M2AX phases.

applicable to all 240 phases, our handling of numerical
issues resulting in the loss of symmetry, as well as the
effects of multiple stationary points on the potential energy
surface.

(ii) Our survey has produced a large data base of structural
parameters, elastic constants, and moduli for 240 M2AX
phases. This data base is included as supplementary
data (available from stacks.iop.org/JPhysCM/21/305403)
and it dramatically extends the existing knowledge about
the elastic properties of this class of materials. Previous
studies have been limited to isolated M2AX phases
[13–15, 17–19, 35–37] or smaller surveys on a limited
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set of properties (e.g. the bulk modulus of 36 phases
in [16] or C44 for 24 phases in [41]). The present
work, in providing a full set of elastic constants for an
effectively comprehensive set of elemental combinations,
sets a new benchmark, allowing an assessment of M2AX
phase structure–property relations that cover the entire
family.

(iii) We have presented and discussed detailed correlation
analyses over the data. These reveal how various elastic
and structural properties are related across the M2AX
phase family, and how they are influenced by the choice
of elements. Specifically, the correlations reveal the
governing role of the A element and its interaction with
the M element in determining the c axis compressibility
and shearability of the material. The role of the X element
is relatively minor, with the strongest effect seen in the
in-plane constants C11 and C12. These findings offer
strategies to tailor the elastic behaviour of the M2AX
phases by judicious choice of M, A, and X elements.

(iv) We have identified several elemental compositions that
exhibit extremal properties. This serves to guide
future research—experiment and theory—to elemental
compositions with potentially unique materials properties.
For instance, we identify the W2SnC phase as having the
lowest C44 constant indicating that it may be effective as a
high-temperature dry lubricant.
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